翻訳と辞書
Words near each other
・ Distant (album)
・ Distant Cousins
・ Distant Cousins (American band)
・ Distant Drum
・ Distant Drummer
・ Distant Drummer (album)
・ Distant Drums
・ Distant Drums (song)
・ Distant Early Warning
・ Distant Early Warning (song)
・ Distant Early Warning Line
・ Distant Earth
・ Distant Horizons
・ Distant Journey
・ Dissolution of the Viceroyalty of the Río de la Plata
Dissolution testing
・ Dissolvable tobacco
・ Dissolve (band)
・ Dissolve (filmmaking)
・ Dissolved air flotation
・ Dissolved and Effused
・ Dissolved gas analysis
・ Dissolved gas flotation
・ Dissolved load
・ Dissolved organic carbon
・ Dissolved silica
・ Dissolving pulp
・ Dissomorphia
・ Dissomorphia australiaria
・ Dissona


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dissolution testing : ウィキペディア英語版
Dissolution testing
In the pharmaceutical industry, drug dissolution testing is routinely used to provide critical in vitro drug release information for both quality control purposes, i.e., to assess batch-to-batch consistency of solid oral dosage forms such as tablets, and drug development, i.e., to predict in vivo drug release profiles.〔Bai, G., Wang, Y., Armenante, P. M., “Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at Different Impeller Agitation Speeds, ” International Journal of Pharmaceutics, 403 (1-2), Pages 1-14, 2011〕
In vitro drug dissolution data generated from dissolution testing experiments can be related
to in vivo pharmacokinetic data by means of in vitro-in vivo correlations (IVIVC). A
well established predictive IVIVC model can be very helpful for drug formulation
design and post-approval manufacturing changes.〔Kortejärvi H, Malkki J, Marvola M, Urtti A, Yliperttula M, Pajunen P., "Level A In Vitro-In Vivo Correlation (IVIVC) Model with Bayesian Approach to Formulation Series". J Pharm Sci. 95 (7), Pages 1595-1605, 2006.〕
The main objective of developing and evaluating an IVIVC is to establish the dissolution test as a surrogate for human studies, as stated by the Food and Drug Administration (FDA). Analytical data from drug dissolution testing are sufficient in many cases to establish safety and efficacy of a drug product without in vivo tests, following minor formulation and manufacturing changes (Qureshi and Shabnam, 2001). Thus, the dissolution testing which is conducted in dissolution apparatus must be able to provide accurate and reproducible results.
Several dissolution apparatuses exist. In United States Pharmacopeia (USP) General Chapter <711> Dissolution, there are four dissolution apparatuses standardized and specified.〔United States Pharmacopeia 34/National Formulary 29, 2011.〕 They are:
• USP Dissolution Apparatus 1 - Basket (37°C)
USP Dissolution Apparatus 2 - Paddle (37°C)
• USP Dissolution Apparatus 3 - Reciprocating Cylinder (37°C)
• USP Dissolution Apparatus 4 - Flow-Through Cell (37°C)
USP Dissolution Apparatus 2 is the most widely used apparatus among these four.
The performances of dissolution apparatuses are highly dependent on hydrodynamics due to the nature of dissolution testing. The designs of the dissolution apparatuses and the ways of operating dissolution apparatuses have huge impacts on the hydrodynamics, thus the performances. Hydrodynamic studies in dissolution apparatuses were carried out by researchers over the past few years with both experimental methods and numerical modeling such as Computational Fluid Dynamics (CFD). The main target was USP Dissolution Apparatus 2.〔〔Bai, G., Armenante, P. M., “Hydrodynamics, Mass transfer and Dissolution Effects Induced by Tablet Location during Dissolution Testing,” Journal of Pharmaceutical Sciences, Volume 98, Issue 4, Pages 1511-1531, 2009〕〔Bai, G., Armenante, P. M., “ Velocity Distribution and Shear Rate Variability Resulting from Changes in the Impeller Location in the USP Dissolution Testing Apparatus II, “ Pharmaceutical Research, Volume 25, Issue 2, Pages 320-336, 2008〕〔Bai, G., Armenante, P. M., Plank, R. V., “Experimental and Computational Determination of Blend Time in USP Dissolution Testing Apparatus II,” Journal of Pharmaceutical Sciences, Volume 96, Issue 11, Pages 3072-3086, 2007.〕〔Bai, G., Armenante, P. M., Plank, R. V., Gentzler, M., Ford, K. and Harmon P., “Hydrodynamic Investigation of USP Dissolution Test Apparatus II,” Journal of Pharmaceutical Sciences, Volume 96, Issue 9, Pages 2327-2349, 2007.〕〔Kukura J., Baxter JL., Muzzio FJ., "Shear distribution and variability in the USP Apparatus 2 under turbulent conditions". Int J Pharm. 279 (1-2), Pages 9–17, 2004.〕〔Baxter JL, Kukura J, Muzzio FJ. "Hydrodynamics-induced variability in the USP Apparatus II Dissolution Test". Int J Pharmaceutics 292 (1-2), Pages 17–28, 2005〕〔McCarthy L., Bradley G., Sexton J., Corrigan O., Healy AM., "Computational fluid dynamics modeling of the paddle dissolution apparatus: Agitation rate mixing patterns and fluid velocities". AAPS Pharm Sci Tech 5 (2), 2004.〕 The reason is that many researchers suspect that USP Dissolution Apparatus 2 provides inconsistent and sometimes faulty data.〔Cox DC., Furman WB., Thornton LK., 1983. Systematic error associated with Apparatus 2 of the USP Dissolution Test III: Limitation of Calibrators and the USP Suitability Test. J Pharm Sci. 72 (8), 910– 913.〕〔Cox DC., Furman WB., 1982. Systematic error associated with Apparatus 2 of the USP dissolution test I: Effects of physical alignment of the dissolution apparatus. J Pharm Sci 71 (4), 451–452.〕〔Moore TW., Hamilton JF., Kerner CM., 1995. Dissolution testing: Limitation of USP prednisone and salicylic acid calibrator tablets. Pharmacopeial Forum 21 (5), 1387–1396.〕〔Costa P, Lobo JMS . 2001 . Influence of dissolution medium agitation on release profiles of sustainedrelease tablets. Drug Devel Ind Pharm 27 (8), 811–817.〕〔Qureshi SA., McGilveray IJ., 1999. Typical variability in drug dissolution testing: study with USP and FDA calibrator tablets and a marketed drug (glibenclamide) product. Eur J Pharm Sci. 7 (3), 249-258〕〔Qureshi SA., Shabnam J., 2001. Cause of high variability in drug dissolution testing and its impact on setting tolerances. Euro J Pharm Sci. 12 (3),271–276.〕〔Mauger J., Ballard J., Brockson R., De S., Gray V., Robinson D., 2003. Intrinsic dissolution performance of the USP dissolution apparatus 2 (rotating paddle) using modified salicylic acid calibration tablets: Proof of principle. Dissol Technol 10(3), 6–15.〕 The hydrodynamic studies of USP Dissolution Apparatus 2 mentioned above clearly showed that it does have intrinsic hydrodynamic issues which could result in problems. In 2005, Professor Piero Armenante from New Jersey Institute of Technology (NJIT) and Professor Fernando Muzzio from Rutgers University submitted a technical report to the FDA.〔()〕 In this technical report, the intrinsic hydrodynamic issues with USP Dissolution Apparatus 2 based on the research findings of Armenante's group and Muzzio's group were discussed.
More recently, hydrodynamic studies were conducted in USP Dissolution Apparatus 4.〔Kakhi, M.,"Mathematical modeling of the fluid dynamics in the flow-through cell",International Journal of Pharmaceutics, 376 (1-2), pp. 22-40, 2009〕〔Kakhi, M.,"Classification of the flow regimes in the flow-through cell", European Journal of Pharmaceutical Sciences, 37 (5), pp. 531-544, 2009〕〔D'Arcy, D.M., Liu, B., Bradley, G., Healy, A.M., Corrigan, O.I.,"Hydrodynamic and species transfer simulations in the USP 4 dissolution apparatus: Considerations for dissolution in a low velocity pulsing flow", Pharmaceutical Research 27 (2), pp. 246-258, 2010〕
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dissolution testing」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.